Mean and covariance adaptation based on minimum classification error linear regression for continuous density HMMs

نویسندگان

  • Haibin Liu
  • Zhenyang Wu
چکیده

The performance of speech recognition system will be significantly deteriorated because of the mismatches between training and testing conditions. This paper addresses the problem and proposes an algorithm to adapt the mean and covariance of HMM simultaneously within the minimum classification error linear regression (MCELR) framework. Rather than estimating the transformation parameters using maximum likelihood estimation (MLE) or maximum a posteriori, we proposed to use minimum classification error (MCE) as the estimation criterion. The proposed algorithm, called IMCELR (Improved MCELR), has been evaluated on a Chinese digit recognition tasks based on continuous density HMM. The experiments show that the proposed algorithm is more efficient than maximum likelihood linear regression with the same amount of adaptation data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum classification error (MCE) model adaptation of continuous density HMMS

In this paper, a framework of minimum classification error (MCE) model adaptation for continuous density HMMs is proposed based on the approach of "super" string model. We show that the error rate minimization in the proposed approach can be formulated into maximizing a special ratio of two positive functions, and from that a general growth transform algorithm is derived for MCE based model ada...

متن کامل

Minimum classification error linear regression for acoustic model adaptation of continuous density HMMs

In this paper, a concatenated "super" string model based minimum classification error (MCE) model adaptation approach is described. We show that the error rate minimization in the proposed approach can be formulated into maximizing a special ratio of two positive functions. The proposed string model is used to derive the growth transform based error rate minimization for MCE linear regression (...

متن کامل

Maximum a posteriori linear regression (MAPLR) variance adaptation for continuous density HMMS

In this paper, the theoretical framework of maximum a posteriori linear regression (MAPLR) based variance adaptation for continuous density HMMs is described. In our approach, a class of informative prior distribution for MAPLR based variance adaptation is identified, from which the close form solution of MAPLR based variance adaptation is obtained under its EM formulation. Effects of the propo...

متن کامل

Maximum a Posterior Linear Regression Based Variance Adaptation of Continuous Density Hmms

In this paper, the theoretical framework of maximum a posterior linear regression (MAPLR) based variance adaptation for continuous density HMMs is described. In our approach, a class of informative prior distribution for MAPLR based variance adaptation is identified, from which the close form solution of MAPLR based variance adaptation is obtained under its EM formulation. Effects of the propos...

متن کامل

Linear Least Squares Estimation of Regression Models for Two-Dimensional Random Fields

We consider the problem of estimating regression models of two-dimensional random fields. Asymptotic properties of the least squares estimator of the linear regression coefficients are studied for the case where the disturbance is a homogeneous random field with an absolutely continuous spectral distribution and a positive and piecewise continuous spectral density. We obtain necessary and suffi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004